Abstract
The stress and strain-rate fields characterizing the Dead Sea Fault System are investigated by using seismological and geodetic observations. In order to assess spatial variations in the regional stress field, we compiled a multidisciplinary dataset of well-constrained horizontal indicators, by merging all available data reported in literature with the data obtained in this study through weighted stress inversions of focal plane solutions. Our findings indicate that the state of stress is characterized by the coexistence of a normal faulting stress regime with the primarily strike-slip one, according to the regional frame illustrated by previous geological and seismological observations. An updated velocity field computed from new observations and earlier published data depicts the general left-lateral motion of the Dead Sea Fault System well. In agreement with previous studies, we detected some differences in the slip-rate pattern between the northern and the southern sectors of the fault system. The geodetic strain-rate field highlights how much of the deformation is accommodated along the fault system itself in a narrow region. The comparison between the stress and the strain-rate directions reveals that both orientations are near-parallel, clearly indicating that present-day crustal stress and ground deformation patterns are chiefly driven by the same tectonic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.