Abstract
Although ergodic divertors are primarily designed to control particle and heat fluxes at the plasma edge, they also happen to affect the MHD stability of tokamak discharges. On Tore Supra, the ergodic divertor has long been known to stabilize the m/n = 2/1 tearing mode induced, for instance, by edge radiation and detachment processes, thus allowing safe high-current and high-density operations. More recently, though, in discharges where ergodic divertor operations were optimized relative to the control of the edge-plasma (i.e. with large divertor perturbation), a detrimental increase in the disruptivity has been observed. The action that the ergodic divertor has on the MHD activity is interpreted in terms of a redistribution of the current profile. The latter results from a large increase in the edge resistivity, primarily induced by the degradation of the electron energy confinement in the ergodic layer. The possibility that a transport barrier develops in the vicinity of the separatrix strongly affects the considered modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.