Abstract

This paper presents a method for fine commutation tuning of brushless direct current (BLDC) motor. First, we analyze the phase current waveform under commutation error and nonideal back-EMF. From the relationship derived, we propose a feedback compensation method in combination with a sensored BLDC motor or any sensorless drive technique to adjust commutation instant by forcing the current integrals of the two half periods in one 60° conducting period to be equal. The method is robust to variations in resistance and inductance, as well as to nonideal back-EMF, pushing the peak values of the current waveform at the front and back of each conducting period to be more identical. Simulations are presented and a digital signal processor (DSP)-based sensorless scheme contingent on a disturbance observer for back electromotive force (back-EMF) estimation in combination with the proposed control method is implemented to verify its effectiveness experimentally. The results show that proposed method is capable of running the motor at different speeds, load torque, and under the speed-varying operating condition with low levels of motor vibration and power consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.