Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR/Cas system) is now the predominant approach for genome editing. Compared to conventional genetic editing methods, CRISPR/Cas technology offers several advantages that were previously unavailable. Key benefits include the ability to simultaneously modify multiple locations, reduced costs, enhanced efficiency, and a more user-friendly design. By directing Cas-mediated DNA cleavage to specific genomic targets and utilizing intrinsic DNA repair processes, this system can produce site-specific gene modifications. This goal is achieved through an RNA-guided procedure. As the most effective gene editing method currently available, the CRISPR/Cas system has proven to be highly valuable in genomic research across a wide range of species since its discovery as a component of the adaptive immune system in bacteria. Its applicability extends to various organisms, making it increasingly prevalent in the medical field, where it shows great promise in investigating viral infections, cancer, and genetic disorders. Furthermore, it enhances our understanding of fundamental genetics. This article outlines the current antiretroviral therapy and its adverse effects but also CRISPR/Cas technology. This review article also discusses its mechanism of action and potential applications in the treatment of HIV/AIDS.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have