Abstract

This article reviews the key biochemical mechanisms that govern O2 transport, NO scavenging, and oxidative degradation of acellular hemoglobin (Hb) and how these ideas have been used to try to develop strategies to engineer safer and more effective hemoglobin-based oxygen carriers (HBOCs). Significant toxicities due to acellular Hb have been observed after the administration of HBOCs or after the lysis of red cells, and include rapid clearance and kidney damage due to dissociation into dimers, haptoglobin binding, and macrophage activation; early O2 release leading to decreased tissue perfusion in capillary beds; interference with endothelial and smooth muscle signaling due to nitric oxide (NO) scavenging; autooxidization of heme iron followed by production of reactive oxygen species; and iron overload symptoms due to hemin loss, globin denaturation, iron accumulation, and further inflammation. Protein engineering can be used to mitigate some of these side effects, but requires an in-depth mechanistic understanding of the biochemical and biophysical features of Hb that regulate quaternary structure, O2 affinity, NO dioxygenation, and resistance to oxidation, hemin loss, and unfolding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.