Abstract

Biomaterials with suitable surface modification strategies are contributing significantly to the rapid development of the field of bone tissue engineering. Despite these encouraging results, utilization of biomaterials is poorly translated to human clinical trials potentially due to lack of knowledge about the interaction between biomaterials and the body defense mechanism, the "immune system". The highly complex immune system involves the coordinated action of many immune cells that can produce various inflammatory and anti-inflammatory cytokines. Besides, bone fracture healing initiates with acute inflammation and may later transform to a regenerative or degenerative phase mainly due to the cross-talk between immune cells and other cells in the bone regeneration process. Among various immune cells, macrophages possess a significant role in the immune defense, where their polarization state plays a key role in the wound healing process. Growing evidence shows that the macrophage polarization state is highly sensitive to the biomaterial's physiochemical properties, and advances in biomaterial research now allow well controlled surface properties. This review provides an overview of biomaterial-mediated modulation of the immune response for regulating key bone regeneration events, such as osteogenesis, osteoclastogenesis, and inflammation, and it discusses how these strategies can be utilized for future bone tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.