Abstract

As patients with triple-negative breast cancer (TNBC) have a very weak response to hormone inhibition or anti-HER2 therapy, traditional chemotherapy is commonly used in these patients. Recently, carboplatin has been approved for the clinical treatment of TNBC. However, several patients exhibit resistance to carboplatin treatment. Therefore, strategies to enhance the antitumor effect of carboplatin need to be explored. In our study, we investigated the function of curcumin in increasing the response to carboplatin. MTT and colony formation assays were used to evaluate cell viability after carboplatin and curcumin treatment. In addition, we conducted flow cytometric and Western blot analyses to examine cellular apoptosis. Subsequently, molecular and biochemical experiments were used to explore the mechanism by which curcumin sensitized TNBC to carboplatin treatment. We demonstrated that different TNBC cells responded differently to carboplatin. Low-dose carboplatin killed CAL-51 cells but barely influenced CAL-51-R and MDA-MB-231 cells. To improve the sensitivity of resistant TNBC cells to carboplatin, combined treatment with curcumin was applied and was found to inhibit proliferation and induce apoptosis. Mechanistically, curcumin exerted its anticancer effect by increasing reactive oxygen species (ROS) production, which downregulated the DNA repair protein RAD51, leading to upregulation of γH2AX. As expected, ROS scavenger NAC reversed the inhibitory effect on growth and DNA repair pathway activity mediated by curcumin. Collectively, our data demonstrate that curcumin sensitizes TNBC to the anticancer effect of carboplatin by increasing ROS-induced DNA damage, thus providing an effective combination treatment strategy for TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.