Abstract

Curcumin exhibits a broad spectrum of beneficial health properties that include anti-tumor and anti-cancer activities. The down-regulation of c-myc transcription via stabilizing the G-quadruplex structure formed at the promoter region of the human c-myc gene allows the repression in cancer growth. Small molecules can bind and stabilize this structure to provide an exciting and promising strategy for anti-cancer therapeutics. Herein, we investigated the interaction of Curcumin and its synthetic analogs with G-quadruplex DNA formed at the c-myc promoter by using various biophysical and biochemical assays. Further, its cytotoxic effect and mechanistic insights were explored in various cancer cell lines as well as in multicellular tumor spheroid (MCTS) model. The MCTS possesses almost similar microenvironment as avascular tumors, and micro-metastases can be used as a suitable model for the small molecule-based therapeutics development. Our study provides an expanded overview of the anti-cancer effect of a new Curcumin analog via targeting G-quadruplex structures formed at the promoter region of the human c-myc gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.