Abstract

Bearing estimation algorithms based on the cumulants of array data have been developed to suppress additive spatially correlated Gaussian noises. In practice, however, the noises encountered in signal processing environments are often non-Gaussian, and the applications of those cumulant-based algorithms designed for Gaussian noise to non-Gaussian environments may severely degrade the estimation performance. The authors propose a new cumulant-based method to solve this problem. This approach is based on the fourth-order cumulants of the array data transformed by DFT, and relies on the statistical central limit theorem to show that the fourth-order cumulants of the additive non-Gaussian noises approach zero in each DFT cell. Simulation results are presented to demonstrate that the proposed method can effectively estimate the bearings in both Gaussian and non-Gaussian noise environments. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.