Abstract

The atomic structure and electronic transport properties of Cu-metalated carbyne are investigated by using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the incorporation of Cu atom in carbyne improves its robustness against Peierls distortion, thus to make Cu-metalated carbyne behave as a one-dimensional metal. When a finite Cu-metalated carbyne chain is connected to two (111)-oriented platinum electrodes, nearly linear current-voltage characteristics are obtained for both the atop and adatom binding sites. This is due to the efficient electronic coupling between the Cu-metalated carbyne chain and the Pt electrodes, demonstrating the promising applications of Cu-metalated carbyne chains as molecular wires in future electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.