Abstract

Two synthetic derivatives of the naturally occurring cyclic pseudooctapeptides patellamide A-F and ascidiacyclamide, that is, H(4)pat(2), H(4)pat(3), as well as their Cu(II) complexes are described. These cyclic peptide derivatives differ from the naturally occurring macrocycles by the variation of the incorporated heterocyclic donor groups and the configuration of the amino acids connecting the heterocycles. The exchange of the oxazoline and thiazole groups by dimethylimidazoles or methyloxazoles leads to more rigid macrocycles, and the changes in the configuration of the side chains leads to significant differences in the folding of the cyclic peptides. These variations allow a detailed study of the various possible structural changes on the chemistry of the Cu(II) complexes formed. The coordination of Cu(II) with these macrocyclic species was monitored by high-resolution electrospray mass spectrometry (ESI-MS), spectrophotometric (UV/Vis) and circular dichroic (CD) titrations, and electron paramagnetic resonance (EPR) spectroscopy. Density functional theory (DFT) calculations and molecular mechanics (MM) simulations have been used to model the structures of the Cu(II) complexes and provide a detailed understanding of their geometric preferences and conformational flexibility. This is related to the Cu(II) coordination chemistry and the reactivity of the dinuclear Cu(II) complexes towards CO(2) fixation. The variation observed between the natural and various synthetic peptide systems enables conclusions about structure-reactivity correlations, and our results also provide information on why nature might have chosen oxazolines and thiazoles as incorporated heterocycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.