Abstract

Cognitive Radio Networks (CRNs) enable opportunistic access to the licensed channels by allowing secondary users (SUs) to exploit vacant channel opportunities. One effective technique through which SU s acquire whether a channel is vacant is using geo-location databases. Despite their usefulness, geo-location database-driven CRN s suffer from location privacy threats, merely because SUs have to query the database with their exact locations in order to learn about spectrum availability. In this paper, we propose an efficient scheme for database-driven CRN s that preserves the location privacy of SU s while allowing them to learn about available channels in their vicinity. We present a tradeoff between offering an ideal location privacy while having a high communication overhead and compromising some of the users' coordinates at the benefit of incurring much lower overhead. We also study the effectiveness of the proposed scheme under various system parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.