Abstract

Existing experimental data for the antiferroelastic phase transition in strontium titanate are reviewed and analysed using a Landau free energy of the form ΔG = 1/2Aθs (cothθs/ Tc-colb.θ/T)Q2 + 1/4BQ 4 + 1/6CQ 6, with A = 0·6472 J K−1mol−1, B = 29·12 Jmol−1, C = 39·27 Jmol, T c= 105·6 K, θ S = 60·8 K. The temperature dependence of the critical exponent is found to be due to the delicate balance between the Q 4 and Q 6 terms in the free energy expansion, and the saturation of the order parameter at low temperatures. The spontaneous strains observed in this phase transition are not consistent with simple rotation of the TiO6 octahedra around [001], An alternative model is proposed, where these octahedra expand in order to preserve the volume of the twelve-fold co-ordinated Sr site and the spacing between SrO3 pseudo-closepacked layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.