Abstract

Multifunctional semiconductor cubic silicon carbide (3C-SiC) is employed for fuel cell electrolyte, which has never been used before. n-type 3C-SiC can be individually employed as the electrolyte in fuel cells, but delivers insufficient open circuit voltage and minuscule current density due to its electronic dominant property. By introducing n-type ZnO to form an n–n 3C-SiC/ZnO heterostructure, significant enhancements in the ionic conductivity of 0.12 S/cm and fuel cell performance of 270 mW cm−2 are achieved at 550 °C. It is found that the energy band bending and build-in electric field of the heterostructure play the pivotal role in the ionic transport and suppressing the electronic conduction of 3C-SiC, leading to a markable material ionic property and fuel cell performance. These findings suggest that 3C-SiC can be tuned to ionic conducting electrolyte for fuel cell applications through the heterostructure approach and energy band alignment methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.