Abstract
We demonstrate the synthesis of semiconductor Pb(2-x)Sn(x)S(2) nanocrystals with a cubic rock salt crystal structure in a composition range where this structure is unstable in the bulk. The cubic Pb(2-x)Sn(x)S(2) nanocrystals were prepared using a modified hot injection colloidal synthetic route. The x value is in the range 0.40 < x < 1. Even though these compositions lie in a region of the PbS-SnS phase diagram where no single phase exists, and despite the fact that PbSnS(2) is a distorted orthorhombic phase, the Pb(2-x)Sn(x)S(2) nanocrystals are single phase solid solutions with cubic NaCl-type structure. Experimental evidence for this derives from powder X-ray diffraction (PXRD), electron diffraction, and pair distribution function (PDF) analysis. Elemental compositions determined using scanning transmission electron microscopy/energy dispersive spectroscopy (STEM/EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and electron energy loss spectroscopy (EELS) reveal a composition close to the nominal ones. The band gaps of the Pb(2-x)Sn(x)S(2) nanocrystals (0.52-0.57 eV) are blue-shifted by quantum confinement relative to that of the hypothetical cubic PbSnS(2) phase which density functional theory (DFT) calculations show to be much narrower (0.2 eV) than in the case of orthorhombic PbSnS(2) (1.1 eV). The Pb(2-x)Sn(x)S(2) nanocrystals exhibit a well-defined band gap in the near-IR region and are stable up to ~300 °C above which they phase separate into cubic PbS and orthorhombic α-SnS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.