Abstract

In this paper we present an efficient technique for piecewise cubic Bézier approximation of digitized curve. An adaptive breakpoint detection method divides a digital curve into a number of segments and each segment is approximated by a cubic Bézier curve so that the approximation error is minimized. Initial approximated Bézier control points for each of the segments are obtained by interpolation technique i.e. by the reverse recursion of De Castaljau's algorithm. Two methods, two-dimensional logarithmic search algorithm (TDLSA) and an evolutionary search algorithm (ESA), are introduced to find the best-fit Bézier control points from the approximate interpolated control points. ESA based refinement is proved to be better experimentally. Experimental results show that Bézier approximation of a digitized curve is much more accurate and uses less number of points compared to other approximation techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.