Abstract

The spherelike Cu2O and the hybrids with reduced graphene oxide (rGO) have been synthesized successfully by a facile solution-based self-assembly method. The structure, morphology, composition, and specific surface area of composite were characterized by XRD, SEM, FTIR, XPS, and BET analysis, respectively. The gas-sensing properties to 1 ppm of NO2 at room temperature were also examined. The results indicated that the 1 wt % rGO/Cu2O composite not only exhibits 2.8 times higher response than that of pristine Cu2O and excellent selectivity but also owns rapid response and recovery at room temperature, indicating the composite is a promising sensing material for room temperature detection of low-concentration NO2. The enhanced sensing properties were discussed in detail, which can mainly be attributed to increased gas adsorption active sites and the fast carriers transport due to the incorporating of rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.