Abstract

The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.