Abstract

Metal-organic frameworks (MOFs) have emerged as prospective antibacterial agents or synergistic agents for their versatile chemical building components and structures. In this work, copper(I) halide MOFs of Cu(I)bpyCl (bpy = 4,4'-bipyridine) composited with AgCl/Ag nanoparticles were synthesized, and their antibacterial activities were measured against Escherichia coli and Staphylococcus aureus. The attached chlorine in Cu(I)2Cl2 nodes of the MOFs served as loading sites for silver ions, in which AgCl and concomitant metallic Ag nanoparticles were in situ generated. Exceptional antibacterial activity against E. coli was realized with a minimum inhibitory concentration (MIC) of ∼7.8 μg mL-1, while the MIC value was ∼16 μg mL-1 against S. aureus. Enhanced antibacterial activity against E. coli with light irradiation was measured by the disk diffusion method compared with that under dark conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.