Abstract

A novel strategy to produce bi-metallic heterogeneous Cu/Ag nanoparticles using the gas aggregation source based on cylindrical post-magnetron with segmental Cu/Ag targets is introduced and investigated. It is shown that the production rate of nanoparticles depends not only on the magnetron current and aggregation pressure but also on the ratio of the Cu and Ag in the segmental target. Enhanced production of nanoparticles for larger Cu part in the segmental target has been observed. Furthermore, it is demonstrated that various types of Cu/Ag nanoparticles may be produced including dumbbell-like or onion-like ones with well-separated Cu and Ag domains. Finally, it has been for the first time confirmed that the gas-phase synthesized heterogeneous Cu/Ag nanoparticles are prone to extensive galvanic corrosion. This effect promotes the antibacterial efficiency of Cu/Ag nanoparticles compared to mono-metallic Cu ones, making such nanoparticles highly interesting for medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.