Abstract

The spike (S) protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) mediates a critical stage in infection, the fusion between viral and host membranes. The protein is categorized as a class I viral fusion protein and has two distinct cleavage sites that can be activated by proteases. The activation deploys the fusion peptide (FP) for insertion into the target cell membranes. Recent studies including our experiments showed that the FP was unable to modulate the kinetics of fusion at a low peptide-to-lipid ratio akin to the spike density at the viral surface. Therefore, we modified the C terminus of FP and attached a myristoyl chain (C-myr-FP) to restrict the C terminus near to the interface, bridge both membranes, and increase the effective local concentration. The lipidated FP (C-myr-FP) of SARS-CoV-2 greatly accelerates membrane fusion at a low peptide-to-lipid ratio as compared to the FP with no lipidation. Biophysical experiments suggest that C-myr-FP adopts a helical structure, perturbs the membrane interface, and increases water penetration to catalyze fusion. Scrambled peptide (C-myr-sFP) and truncated peptide (C-myr-8FP) could not significantly catalyze the fusion, thus suggesting the important role of myristoylation and the N terminus. C-myr-FP enhances murine coronavirus infection by promoting syncytia formation in L2 cells. The C-terminal lipidation of the FP might be a useful strategy to induce artificial fusion in biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.