Abstract

Magnetic fluid hyperthermia (MFH) has been proven as a promising cancer therapeutic approach in conjunction with chemotherapy or physiotherapy in patients. The research to find innovative materials with a higher specific absorption rate (SAR) to reduce the dose of magnetic nanoparticles in tumor treatment through MFH while being also adequate for Magnetic Resonance Imaging (MRI) is important. Herein, MnFe2O4 NPs were synthesized with different sizes, using NaOH or NH4OH as a reducing agent, via a green-assisted hydrothermal route. A tetraethyl orthosilicate with the assist of cetrimonium bromide was used to fabricate SiO2 @MnFe2O4 NPs. Based on the Mössbauer and XRD results an undesired amount of α-Fe2O3 was found in the samples synthesized with NH4OH. Concentration-dependent cellular toxicity values were evaluated by invitro 3-(4,5 dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide (MTT) assay on A549 cells, where bare and silica coated nanoparticles exhibited non-toxicity below 691 µg/mL and 566 µg/mL, respectively. The ability of bare MnFe2O4 as the MRI contrast agent was higher compared to the silica-coated sample. The heating efficiency of the ferrofluids was recorded at 128 kHz and 10 kA/m and the highest SAR value was 39 W/g for the pristine MnFe2O4 NPs, making them promising potential materials in MRI and cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.