Abstract

ObjectivesThe aim of this study was to validate the feasibility of a novel structural and computational fluid dynamics–based fractional flow reserve (FFR) algorithm for coronary computed tomography angiography (CTA), using alternative boundary conditions to detect lesion-specific ischemia. BackgroundA new model of computed tomographic (CT) FFR relying on boundary conditions derived from structural deformation of the coronary lumen and aorta with transluminal attenuation gradient and assumptions regarding microvascular resistance has been developed, but its accuracy has not yet been validated. MethodsA total of 338 consecutive patients with 422 vessels from 9 Chinese medical centers undergoing CTA and invasive FFR were retrospectively analyzed. CT FFR values were obtained on a novel on-site computational fluid dynamics–based CT FFR (uCT-FFR [version 1.5, United-Imaging Healthcare, Shanghai, China]). Performance characteristics of uCT-FFR and CTA in detecting lesion-specific ischemia in all lesions, intermediate lesions (luminal stenosis 30% to 70%), and “gray zone” lesions (FFR 0.75 to 0.80) were calculated with invasive FFR as the reference standard. The effect of coronary calcification on uCT-FFR measurements was also assessed. ResultsPer vessel sensitivities, specificities, and accuracies of 0.89, 0.91, and 0.91 with uCT-FFR, 0.92, 0.34, and 0.55 with CTA, and 0.94, 0.37, and 0.58 with invasive coronary angiography, respectively, were found. There was higher specificity, accuracy, and AUC for uCT-FFR compared with CTA and qualitative invasive coronary angiography in all lesions, including intermediate lesions (p < 0.001 for all). No significant difference in diagnostic accuracy was observed in the “gray zone” range versus the other 2 lesion groups (FFR ≤0.75 and >0.80; p = 0.397) and in patients with “gray zone” versus FFR ≤0.75 (p = 0.633) and versus FFR >0.80 (p = 0.364), respectively. No significant difference in the diagnostic performance of uCT-FFR was found between patients with calcium scores ≥400 and <400 (p = 0.393). ConclusionsThis novel computational fluid dynamics–based CT FFR approach demonstrates good performance in detecting lesion-specific ischemia. Additionally, it outperforms CTA and qualitative invasive coronary angiography, most notably in intermediate lesions, and may potentially have diagnostic power in gray zone and highly calcified lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.