Abstract

To retrospectively determine if three-dimensional (3D) viewing improves radiologists' accuracy in classifying true-positive (TP) and false-positive (FP) polyp candidates identified with computer-aided detection (CAD) and to determine candidate polyp features that are associated with classification accuracy, with known polyps serving as the reference standard. Institutional review board approval and informed consent were obtained; this study was HIPAA compliant. Forty-seven computed tomographic (CT) colonography data sets were obtained in 26 men and 10 women (age range, 42-76 years). Four radiologists classified 705 polyp candidates (53 TP candidates, 652 FP candidates) identified with CAD; initially, only two-dimensional images were used, but these were later supplemented with 3D rendering. Another radiologist unblinded to colonoscopy findings characterized the features of each candidate, assessed colon distention and preparation, and defined the true nature of FP candidates. Receiver operating characteristic curves were used to compare readers' performance, and repeated-measures analysis of variance was used to test features that affect interpretation. Use of 3D viewing improved classification accuracy for three readers and increased the area under the receiver operating characteristic curve to 0.96-0.97 (P<.001). For TP candidates, maximum polyp width (P=.038), polyp height (P=.019), and preparation (P=.004) significantly affected accuracy. For FP candidates, colonic segment (P=.007), attenuation (P<.001), surface smoothness (P<.001), distention (P=.034), preparation (P<.001), and true nature of candidate lesions (P<.001) significantly affected accuracy. Use of 3D viewing increases reader accuracy in the classification of polyp candidates identified with CAD. Polyp size and examination quality are significantly associated with accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.