Abstract
Lung nodule segmentation plays a crucial role in early-stage lung cancer diagnosis, and early detection of lung cancer can improve the survival rate of the patients. The approaches based on convolutional neural networks (CNN) have outperformed the traditional image processing approaches in various computer vision applications, including medical image analysis. Although multiple techniques based on convolutional neural networks have provided state-of-the-art performances for medical image segmentation tasks, these techniques still have some challenges. Two main challenges are data scarcity and class imbalance, which can cause overfitting resulting in poor performance. In this study, we propose an approach based on a 3D conditional generative adversarial network for lung nodule segmentation, which generates better segmentation results by learning the data distribution, leading to better accuracy. The generator in the proposed network is based on the famous U-Net architecture with a concurrent squeeze & excitation module. The discriminator is a simple classification network with a spatial squeeze & channel excitation module, differentiating between ground truth and fake segmentation. To deal with the overfitting, we implement patch-based training. We have evaluated the proposed approach on two datasets, LUNA16 data and a local dataset. We achieved significantly improved performances with dice coefficients of 80.74% and 76.36% and sensitivities of 85.46% and 82.56% for the LUNA test set and local dataset, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.