Abstract
Breast cancer persists as a critical global health concern, emphasizing the advancement of reliable diagnostic strategies to improve patient survival rates. To address this challenge, a computer-aided diagnostic methodology for breast cancer classification is proposed. An architecture that incorporates a pre-trained EfficientNet-B0 model along with channel and spatial attention mechanisms is employed. The efficiency of leveraging attention mechanisms for breast cancer classification is investigated here. The proposed model demonstrates commendable performance in classification tasks, particularly showing significant improvements upon integrating attention mechanisms. Furthermore, this model demonstrates versatility across various imaging modalities, as demonstrated by its robust performance in classifying breast lesions, not only in mammograms but also in ultrasound images during cross-modality evaluation. It has achieved accuracy of 99.9% for binary classification using the mammogram dataset and 92.3% accuracy on the cross-modality multi-class dataset. The experimental results emphasize the superiority of our proposed method over the current state-of-the-art approaches for breast cancer classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.