Abstract

The two-dimensional Ruddlesden-Popper (RP) phases are an important class of halide perovskites with versatile optoelectronic properties. So far, only organic-inorganic hybrid RP phases involving long organic spacers were reported in this class. Here, we report an all-inorganic RP phase lead halide perovskite, Cs2PbI2Cl2 (1, I4/ mmm space group; a = 5.6385(8) Å, c = 18.879(4) Å), synthesized by a solid-state method. The compound exhibits a band gap of Eg ∼ 3.04 eV and photoconductivity. We find an anomalous band gap evolution in Cs2Pb1- xSn xI2Cl2 solid solutions. Our combined density functional theory and experimental study supports the thermodynamically stable nature of 1 as a unique ordered phase in the Cs2PbX4 (X = Cl, Br, I) system. The calculations suggest that 1 is a direct bandgap semiconductor with relatively small effective carrier mass along the in-plane direction, consistent with the experimentally observed in-plane UV-light photoresponse. We also demonstrate that 1 is promising for radiation detection capable of α-particle counting. Moreover, 1 shows markedly ambient and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.