Abstract
Owing to their low dielectric loss and high permittivity values, dielectric ceramics have garnered a lot of interest from the scientific and industrial sectors. These properties allow for their downsizing and use in a variety of electronic circuits. This present work focuses on the impact of the substitution of W6+ with Mo6+ on the structural and dielectric features of the crystalline phases in a similar TTB structure within the Ba0.54Na0.46Nb1.29W(0.37−x)MoxO5 system, with 0 ≤ x ≤ 0.33 mol%. These crystalline phases were elaborated using the conventional solid-state reaction method and analyzed with XRD, Raman, and dielectric techniques. The Rietveld refinement method showed that all these phases are characterized by tetragonal structure and the P4bm space group. The Raman spectra corresponded well to a TTB-like structure, and all the bands were assigned. The dielectric measurements of the prepared ceramic samples facilitated the determination of their phase transition temperature (Tc) and the dielectric responses. This investigation focused on determining dielectric permittivity (ε′) and its correlation with increases in MoO3 content in the ceramic structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.