Abstract

AbstractZnO thin films with various Co doping levels (0%, 1%, 3%, 5%, 8%, respectively) have been synthesized by sol gel spin coating method on glass substrates. XRD and XPS studies of the films reveal that cobalt ions are successfully doped into ZnO crystal lattice without changing the hexagonal wurtzite structure. The morphologies are studied by SEM and AFM and show wrinkle network structures with uniform size distribution. With Co doping concentration increasing, the wrinkle network width decreases gradually. The transmittance spectra indicate that Co doping can effectively reduce the optical bandgap of ZnO thin films. Photoluminescence show that all samples have ultraviolet, violet and green emission. When Co doping concentration increases up to 5%, the intensity of violet emission is greatly increased and a strong deep blue emission centered at 439 nm appears. The ferromagnetism of all samples was observed at room temperature. The emission mechanisms and ferromagnetism origination are discussed in detail. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.