Abstract

Titanium dioxide (TiO2) nanocrystals with dimensions below 100.0 nm exhibit a high crystal growth polymorphic behaviour in at least three distinct phases anatase, rutile and brookite. The phase composition and structural differences of these TiO2 polymorphs profoundly influence their physicochemical properties, leading to variations in performance for various applications. Particular emphasis is placed on quantifying the structure-property relationships that govern the distinct behaviours of anatase (bandgap ∼3.20 eV), rutile (bandgap ∼3.0 eV) and brookite (bandgap ∼3.4 eV) nanocrystals which exhibit variations in photocatalytic activity. This review provides a comprehensive crystallographic analysis of the polymorphic phases of TiO2 nanocrystals, focusing on their structural characteristics, phase transitions and stability. Crystalline TiO2 phases show anatase (101), brookite (121) and rutile (110) diffraction and anatase and rutile are tetragonal, while brookite shows an orthorhombic structure. The review provides a systematic compilation of the phase biographs of TiO2 polymorphs at the nanoscale through a detailed examination of X-ray diffraction patterns, electron microscopy images, and spectroscopic data. The effects of synthesis conditions such as temperature, precursors, and additives, on the phase composition and structural evolution are thoroughly discussed. Overall, this review provides a timely and comprehensive understanding of the crystallographic phase biographs of TiO2 polymorphs at the nanoscale, paving the way for the rational design of high-performance TiO2-based materials with tailored properties for diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.