Abstract

ABSTRACTThe lure of flat panel displays has stimulated much research on the crystallization of silicon films deposited on large-area transparent substrates. In most respects, fused quartz is ideal. It has high purity, thermal shock resistance, and a softening point above the silicon melting temperature. Unfortunately, fused quartz has such a small thermal expansion that the silicon film cracks as it cools. This problem has been attacked by patterning with islands or moats before and after crystallization, by capping, and by using silicate glass substrates that match the thermal expansion of silicon. The relative merits of these methods are compared. Melting of the silicon film to achieve high mobility has been accomplished by a variety of methods including lasers, electron beams, and strip heaters. For low melting temperature glasses, surface heating with a laser or electron beam is essential. Larger grains are obtained with the high bias temperature, strip heater techniques The low-angle grain boundaries characteristic of these films may be caused by constitutional undercooling. A model is developed to predict the boundary spacing as a function of scan rate and temperature gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.