Abstract

The crystallization behavior of amorphous nano regions (20–100 nm in diameter) embedded in a textured epitaxial Ge2Sb2Te5 (GST) 25 nm thick film grown on a Si (1 1 1) substrate has been investigated in situ by transmission electron microscopy (TEM) analysis. The amorphous regions were obtained by irradiation with 30 keV Ge+ at a fluence of 1.5 × 1014 ions cm−2 of masked samples. The adopted configuration simulates the GST structure of a device in the RESET state, it is then of relevance for understanding their data retention characteristics. The in situ TEM analysis indicates that the amorphous to crystal transition for 20 nm dots is characterized by a growth velocity of 3.6 pm s−1 at 75 °C, probably related to the external partially damaged area. At 90 °C annealing crystallization is completed for 20 nm dot. In the case of 50 and 100 nm diameter amorphous dots a growth velocity of about 2.6 pm s−1 was observed at 90 °C and of 170 pm s−1 at 110 °C. The transition is governed only by rearrangement (nucleation is absent) of the atoms located at the boundary of the amorphous dot with the surrounding crystalline regions. In some cases a preferential growth along surfaces normal to the [1 1 1] and to the [1 2 1] directions has been found. The crystallographic characterization of the regrowth crystal indicates a good matching with the zone axis of the surrounding material although the seed, a Si (1 1 1) wafer, at the bottom interface is damaged by the implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.