Abstract

ABSTRACTFlash-lamp annealing (FLA) has been investigated for the crystallization of a 60 nm amorphous silicon (a-Si) layer deposited by PECVD on display glass. Input factors to the FLA system included lamp intensity and pulse duration. Conditions required for crystallization included use of a 100 nm SiO2capping layer, and substrate heating resulting in a surface temperature ∼ 460 °C. An irradiance threshold of ∼ 20 kW/cm2was established, with successful crystallization achieved at a radiant exposure of 5 J/cm2, as verified using variable angle spectroscopic ellipsometry (VASE) and Raman spectroscopy. Nickel-enhanced crystallization (NEC) using FLA was also investigated, with results suggesting an increase in crystalline volume. Different combinations of furnace annealing and FLA were studied for crystallization and activation of samples implanted with boron and phosphorus. Boron activation demonstrated a favorable response to FLA, achieving a resistivity ρ < 0.01 Ω•cm. Phosphorus activation by FLA resulted in a resistivity ρ ∼ 0.03 Ω•cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.