Abstract

Despite its small size, the asteroid 4 Vesta has been completely differentiated to core and mantle. Its composition is similar to howardite-eucrite-diogenite (HED) meteorites of which the detailed petrology is known. Therefore, 4 Vesta is a good target for understanding the differentiation of terrestrial planets. A new differentiation model for crust formation has been developed by taking magma ocean fluid dynamics, chemical equilibrium, the presence of 26Al, and cooling into consideration with a special focus on crystal separation. The role of crystal size, thickness of the conductive lid, and fO2 are evaluated as parameters. The results show that large crystals of at least 1 cm settled and formed a kilometer-thick cumulate layer of orthopyroxene with Mg# of 0.70–0.90 in ∼20 thousand years, which almost agrees with the Mg # of diogenites. Smaller grain sizes formed thinner layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.