Abstract

Phase composition and molecular mobility were studied using 1H NMR T2 relaxometry in isotactic polybutene-1 (iPB-1) with two polymorphs - form I and II crystals. Several types of NMR relaxation methods and data analysis were evaluated for determining the most reliable way for studying physical phases in iPB-1. Three-phase model provided the most appropriate description of the phase composition in iPB-1, i.e., a crystal-amorphous interface separates the crystalline and the amorphous phases. Due to complex molecular mobility in iPB-1, the amount of rigid fraction should be considered as NMR crystallinity number. Two types of chain segments are present in the amorphous phase: (1) chain segments with anisotropic mobility due to chain anchoring to crystals and chain entanglements; and (2) highly mobile chain end segments. The polymorphic phase II to I transition causes significant immobilization of polymer chains in the crystalline and the amorphous phases. Molecular weight of iPB-1 largely influences phase composition and molecular mobility in crystalline and amorphous phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.