Abstract
The challenge of inadequate mechano-electrochemical stability in rechargeable fibrous Zn-ion batteries (FZIBs) has emerged as a critical challenge for their broad applications. Traditional rigid Zn wires struggle to maintain a stable electrochemical interface when subjected to external mechanical stress. To address this issue, a wet-spinning technique has been developed to fabricate Zn powder based fibrous anode, while carbon nanotubes (CNTs) introduced to enhance the spinnability of Zn powder dispersion. The followed annealing treatment has been conducted to reengineer the Zn crystalline texture with CNTs assisted surface tension regulation to redirect (002) crystallographic textural formation. The thus-derived annealed Zn@CNTs fiber demonstrates great mechano-electrochemical stability after a long-term bending and electrochemical process. The fabricated FZIB demonstrates a remarkable durability, surpassing 800h at 1mAcm-2 and 1mAhcm-2, with a marginal voltage hysteresis increase of 21.7mV even after 100 twisting cycles under 180 degree twisting angle. The assembled FZIB full cell displays an 88.6% capacity retention even after a long cycle of a series of bending, knotting, and straightening deformation. It has been also woven into a 200cm2 size textile to demonstrate its capability to integrate into smart textiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.