Abstract

Four novel crystalline stereocomplexed polymers are formed by mixing isotactic (R)- and (S)-polycarbonates in 1:1 mass ratio. They show the enhanced thermal stability and new crystalline behavior, significantly distinct from the component enantiomer. Two stereocomplexed CO2 -based polycarbonates from meso-3,4-epoxytetrahydrofuran and 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane have high melting temperatures of up to 300 °C, about 30 °C higher than the individual enantiomers. Isotactic (R)- or (S)-poly(cyclopentene carbonate) and poly(cis-2,3-butene carbonate) are typical amorphous polymeric materials, however, upon mixing both enantiomers together, a strong interlocked interaction between polymer chains of opposite configuration occurs, affording the crystalline stereocomplexes with melting temperatures of about 200 °C and 180 °C, respectively. A DFT study suggests that the driving force forming the stereocomplex is the hydrogen-bonding between carbonate units of the opposite enantiomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.