Abstract
In the last few years the marked share of thin film solar cells increased appreciably to 16.8% (in 2009). The main part of that increase refers to CdTe modules (9.1%) followed by silicon thin film cells, that is amorphous silicon (a-Si) cells or tandem cells consisting of a-Si and nanocrystalline silicon (μc-Si). For a review on thin film solar cells in general see (Green, 2007) and on a-Si/μc-Si cells see (Beaucarne, 2007). The a-Si cells suffer from a low efficiency. In the lab the highest efficiency up to now is 10.1% on 1 cm2 (Green et al., 2011), whereas in the industrial production modules reach about 7%. In order to achieve the required electronic quality of hydrogenated amorphous silicon (a-Si:H), low deposition rate (max. 50 nm/min) PECVD (plasma enhanced chemical vapour deposition) is used for deposition which makes production more expensive as compared to CdTe modules. This is even worse for the layer system in a-Si/μc-Si tandem cells for which the more than 1 μm thick nanocrystalline μc-Si layer is deposited by PECVD, too, however with much lower deposition rates in the 10 nm/min range. Cells consisting just of μc-Si reached 10.1% efficiency (Green et al., 2011), just as a-Si-cells, whereas tandem cells arrived at 11.9%, both for lab cells, whereas in production the results are below 10%. The low deposition rate combined with the limited efficiency, make these cells not too competitive compared to CdTe cells, which, at lower cost, reach 11% in industrial production, or to CIGS (Copperindium-gallium-diselenide) cells with similar efficiencies. As an alternative, polycrystalline (grains in the μm range) or multicrystalline (grains >10 μm) silicon thin film solar cells receive growing interest (Beaucarne et al., 2006). The present paper reviews the status of these cells, and on the other hand gives details of laser based preparation methods, on which the authors have been working for many years. Both types, polyand multicrystalline silicon thin film cells, are prepared by depositing amorphous silicon followed by some crystallization process. One main advantage of the crystallization process is that the electronic quality of the virgin a-Si is not important. Therefore high rate deposition processes such as electron beam evaporation or sputtering can be used which are much less expensive as compared to low rate PECVD. In case of sputtering doped thin films can be deposited by using doped sputtering targets, whereas in electron beam evaporation the dopands are coevaporated from additional sources. So, in these deposition processes the use of toxic or hazardous gases such as silane, phosphine or diborane is avoided, reducing the abatement cost. Polycrystalline silicon layers for solar cells can be prepared in a single crystallization step. The layer system containing the doping profile is deposited in the amorphous state and is
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.