Abstract
Conserved glycines, Gly139 and Gly143, in the distal helix of human heme oxygenase-1 (HO-1) provide the flexibility required for the opening and closing of the heme active site for substrate binding and product dissociation during HO-1 catalysis. Earlier mutagenesis work on human HO-1 showed that replacement of either Gly139 or Gly143 suppresses heme oxygenase activity and, in the case of the Gly139 mutants, increases peroxidase activity (Liu et al. in J. Biol. Chem. 275:34501, 2000). To further investigate the role of the conserved distal helix glycines, we have determined the crystal structures of the human HO-1 G139A mutant, the G139A mutant in a complex with NO, and the G143H mutant at 1.88, 2.18 and 2.08 A, respectively. The results confirm that fine tuning of the previously noted active-site hydrogen-bonding network is critical in determining whether heme oxygenase or peroxidase activity is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.