Crystal Structures of Organoselenium Compounds: Structural Descriptors for Chalcogen Bonds

Publication Date Aug 9, 2022


AbstractLess conventional non-covalent interactions such as chalcogen bonds attract the attention of researchers in various fields (organocatalysis, material sciences, biological chemistry, …). We present here useful descriptors to easily discriminate the structures in which chalcogen bonds involving selenium are observed. Our study focused on organoselenium compounds as chalcogen bond donors and on molecular entities, as chalcogen bond acceptors, containing N, O, S, Se, and Te atoms or aromatic rings. For conventional chalcogen bonds (C–Se⋯X, with X = N, O, S, Se, or Te), the combination of the C–Se⋯X angle and the distance between X and the C–Se-C plane proved to be most relevant for identification of chalcogen bonds. For chalcogen⋯π bonds, the most relevant parameters are a combination of the C–Se⋯X angle and the angle between the C–Se bond and the normal to the aromatic ring plane.


Chalcogen Bonds Chalcogen Bond Donors Te Atoms Se Bond Organoselenium Compounds Molecular Entities Aromatic Ring Relevant Parameters Material Sciences Aromatic Plane

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 12, 2022 to Sep 18, 2022

R DiscoverySep 19, 2022
R DiscoveryArticles Included:  5

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.