Abstract

Hexaaquaaluminum methanesulfonate crystals, [Al(H2O)6][CH3SO3]3 were synthesized by a hydrothermal reaction of Al(OH)3 with methanesulfonic acid. Single-crystal diffraction determination revealed that Al3+ was coordinated by six water molecules in octahedral geometry, while the CH3SO3– anion connected with Al3+ through coordinated water molecules by hydrogen bonds. The six-coordinate environment of Al was also determined by 27Al MAS NMR measurement. Thermogravimetric analysis and Fourier transform infrared spectroscopy showed that the decomposition intermediate at 265–365 °C was Al2(μ-OH)(CH3SO3)5 and the final product was amorphous Al2O3 residue with about 0.8 wt% SO3 at 520–800 °C. A pure phase of [Al(H2O)6][CH3SO3]3 was confirmed by powder X-ray diffraction analysis. Esterification of n-butyric acid with n-butanol and ketalization of cyclohexanone with glycol catalyzed by [Al(H2O)6][CH3SO3]3 and Al2(μ-OH)(CH3SO3)5, respectively, proceeded in 100% yield by continuously removing the produced water. In the case of tetrahydropyranylation of n-butanol at room temperature in dichloromethane, the catalytic activity of [Al(H2O)6][CH3SO3]3 was much lower than that of Al2(μ-OH)(CH3SO3)5. Furthermore, both [Al(H2O)6][CH3SO3]3 precursor and Al2(μ-OH)(CH3SO3)5 catalysts could be recycled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.