Abstract

Crude oil spills represent a major ecological threat because of the chemical inertness of the constituent n-alkanes. The Gram-negative bacterium Pseudomonas aeruginosa is one of the few bacterial species able to metabolize such compounds. Three chromosomal genes, rubB, rubA1, and rubA2 coding for an NAD(P)H:rubredoxin reductase (RdxR) and two rubredoxins (Rdxs) are indispensable for this ability. They constitute an electron transport (ET) pathway that shuttles reducing equivalents from carbon metabolism to the membrane-bound alkane hydroxylases AlkB1 and AlkB2. The RdxR-Rdx system also is crucial as part of the oxidative stress response in archaea or anaerobic bacteria. The redox couple has been analyzed in detail as a model system for ET processes. We have solved the structure of RdxR of P. aeruginosa both alone and in complex with Rdx, without the need for cross-linking, and both structures were refined at 2.40- and 2.45-A resolution, respectively. RdxR consists of two cofactor-binding domains and a C-terminal domain essential for the specific recognition of Rdx. Only a small number of direct interactions govern mutual recognition of RdxR and Rdx, corroborating the transient nature of the complex. The shortest distance between the redox centers is observed to be 6.2 A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.