Abstract

PepV from Lactobacillus delbrueckii, a dinuclear zinc peptidase, has been characterized as an unspecific amino dipeptidase. The crystal structure of PepV in complex with the phosphinic inhibitor AspΨ[PO 2CH 2]AlaOH, a dipeptide substrate mimetic, reveals a “catalytic domain” and a “lid domain,” which together form an internal active site cavity that traps the inhibitor. The catalytic domain is topologically similar to catalytic domains from amino- and carboxypeptidases. However, the lid domain is unique among the related enzymes. In contrast to the other related exopeptidases, PepV recognizes and fixes the dipeptide backbone, while the side chains are not specifically probed and can vary, rendering it a nonspecific dipeptidase. The cocrystallized inhibitor illustrates the two roles of the two catalytic zinc ions, namely stabilization of the tetrahedral intermediate and activation of the catalytic water molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.