Abstract
The crystal structure of CcdB, a protein that poisons Escherichia coli gyrase, was determined in three crystal forms. The protein consists of a five-stranded antiparallel β-pleated sheet followed by a C-terminal α-helix. In one of the loops of the sheet, a second small three-stranded antiparallel β-sheet is inserted that sticks out of the molecule as a wing. This wing contains the LysC proteolytic cleavage site that is protected by CcdA and, therefore, forms a likely CcdA recognition site. A dimer is formed by sheet extension and by extensive hydrophobic contacts involving three of the five methionine residues and the C terminus of the α-helix. The surface of the dimer on the side of the α-helix is overall negatively charged, while the opposite side as well as the wing sheet is dominated by positive charges. We propose that the CcdB dimer binds into the central hole of the 59 kDa N-terminal fragment of GyrA, after disruption of the head dimer interface of GyrA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.