Abstract

A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5 Å. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu–Gly170Arg synergism that leads to AGT mistargeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.