Abstract

Coenzyme A (CoA) is an essential cofactor used in a wide variety of biochemical pathways. The final step in the biosynthesis of CoA is catalyzed by dephosphocoenzyme A kinase (DPCK, E.C. 2.7.1.24). Here we report the crystal structure of DPCK from Escherichia coli at 1.8 A resolution. This enzyme forms a tightly packed trimer in its crystal state, in contrast to its observed monomeric structure in solution and to the monomeric, homologous DPCK structure from Haemophilus influenzae. We have confirmed the existence of the trimeric form of the enzyme in solution using gel filtration chromatography measurements. Dephospho-CoA kinase is structurally similar to many nucleoside kinases and other P-loop-containing nucleotide triphosphate hydrolases, despite having negligible sequence similarity to these enzymes. Each monomer consists of five parallel beta-strands flanked by alpha-helices, with an ATP-binding site formed by a P-loop motif. Orthologs of the E. coli DPCK sequence exist in a wide range of organisms, including humans. Multiple alignment of orthologous DPCK sequences reveals a set of highly conserved residues in the vicinity of the nucleotide/CoA binding site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.