Abstract

The 3'-N-sulfamate analogue of thymidylyl(3'-5')thymidine (TnsoT, 1) exhibits a preference for a C3'-endo conformation in the solution and solid states. Its photochemical behavior in solution is compared to that of its natural counterpart, thymidylyl(3'-5')thymidine (TpT, 2), to get further insight into the significance of the C3'-endo conformation on the photoproduct formation at the single-stranded dinucleotide level. Irradiation at 254 nm of 1 led to the same type of photoproducts as observed with 2. However, 1 was significantly more photoreactive than 2, and accordingly, the initial rate of photoproduct formation was enhanced in accordance with its propensity to base stack compared to 2. The corresponding quantum yields were determined and showed that the enhancement factor (1 compared to 2) is moderate for the cyclobutane pyrimidine dimer (CPD) (1.26) and much higher for the (6-4) photoproduct (1.8). These data strongly suggest that the CPD and (6-4) photoproduct arise from distinct minor stacked conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.