Abstract

Dioxygenases catalyze dioxygen incorporation into various organic compounds and play a key role in the complex degradation pathway of mono- and polycyclic aromatic and hetero-aromatic compounds. Here we report the crystal structure of gentisate 1,2-dioxygenase from Silicibacter pomeroyi (GDOsp) at a 2.8 A resolution. The enzyme possessed a conserved three-dimensional structure of the bicupin family, forming a homotetramerization. However, each subunit of GDOsp unusually contained two ferrous centers that were located in its two homologous cupin domains, respectively. Further mutagenic analysis indicated that the enzyme activity of GDOsp depends on the microenvironment in both metal-binding sites. Moreover, homologous structural comparison and functional study on GDOsp variants unveiled a group of functionally essential residues and suggested that the active site of the enzyme is located in the amino-terminal domain, but could be influenced by changes in the carboxyl domain. Therefore, GDOsp may provide a working model for studying long-distance communication within a protein (or its complex).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.