Abstract

A detailed petrological study is presented for six phenocryst-poor obsidian samples (73–75 wt% SiO2) erupted as small volume, monogenetic domes in the Mexican and Cascade arcs. Despite low phenocryst (+microphenocryst) abundances (2–6 %), these rhyolites are each multiply saturated with five to eight mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± zircon ± hornblende ± clinopyroxene ± sanidine ± pyrrhotite). Plagioclase and orthopyroxene phenocrysts (identified using phase-equilibrium constraints) span ≤30 mol % An and ≤15 % Mg#, respectively. Eruptive temperatures (±1σ), on the basis of Fe–Ti two oxide thermometry, range from 779 (±25) to 940 (±18) °C. Oxygen fugacities (±1σ) range from −0.4 to 1.4 (±0.1) log units relative to those along the Ni–NiO buffer. With temperature known, the plagioclase-liquid hygrometer was applied; maximum water concentrations calculated for the most calcic plagioclase phenocryst in each sample range from 2.6 to 6.5 wt%. This requires that the rhyolites were fluid-saturated at depths ≥2–7 km. It is proposed that the wide compositional range in plagioclase and orthopyroxene phenocrysts, despite their low abundance, can be attributed to changing melt water concentrations owing to degassing during magma ascent. Phase-equilibrium experiments from the literature show that higher dissolved water concentrations lead to more Fe-rich orthopyroxene, as well as more calcic plagioclase. Loss of dissolved water leads to a progressive increase in melt viscosity, and phenocrysts often display diffusion-limited growth textures (e.g., dendritic and vermiform), consistent with large undercoolings caused by degassing. A kinetic barrier to microlite crystallization occurred at viscosities from 4.5 to 5.0 log10 Pa s for these rhyolites, presumably because the rate at which melt viscosity changed was high owing to rapid loss of dissolved water during magma ascent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.