Abstract

AbstractPlastic slip deformation in patterned.GaAs films on Si substrate during cooling from film deposition temperature are numerically simulated under a continuum mechanics approximation. The plastic slip is assumed to take place on (111) <110> slip systems and activation condition of the slip systems is given by the Schmid's law. The critical resolved shear stresses for the activation of slip systems are expressed as a function of accumulated dislocation densities, which are evaluated by models for their movement and interaction. A three dimensional finite element computer program is developed, in which strain hardening behaviour is given a quantitative expression by the models for dislocations. Results of the simulation reveal process of plastic slip and dislocation accumulation in GaAs film. Residual stress evaluated by the simulation agreed well with results obtained by photo-luminescent experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.